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LOCAL INSTABILITY OF SYMMETRICAL RECTANGULAR TUBES
UNDER AXIAL COMPRESSION

By Eugene E. Lundquist
SUMMARY

4 chart is presented for the coefficlent in the for-
nule for the ceritical compressive stress at which cross-
sectional distortion beginsg in a thin-wall tube of rec-—
tangular section symmetrical about its two principal axes.
The energy method of Timoshenko was used in the theoreti-
cal calculations required for the construction of the
chart. The deflection equation used in thig method was
selected to give good accuracy. The exact velues given by
solution of the differential egquation were calculated for
a number of cases and it was found that the energy solu-
tion was correct to within a fraction of 1 percent.

The calculation of the critical compressive stress
at stresses above the elastic range is also discussed.
In order to demonstrate the use of the formulas and the
chart in enginesring calculations, several illustrative
problems are inecluded.

INTRODUCTION

In the design of compression members for aircraft,
whether they be stiffeners in stressed~skin structures or
struts in trussed structures, the allowable stress for
the member is equal to the lowest strength corresponding
to any of the possible types of failure. In reference 1,
all types of column failure =zre classed under iwo head-
ings:

() Primary, or seneral, failure.
(b) Secondary, or loeal, failure.

Primary, or gemeral, failure of a column is defined as
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any type of failure in.which the cross sections are trans-
lated, rotated, or both translated and rotated but not dis-
torted in their own planes (fig. 1). Secondary, or local,
failure of a column is defined as any tyve of failure in
which the cross sections are distorted in thelr own vlanes
but not translated or rotated (fig. 2). Consideration is
given in this paper only to local failure.

One of the factors to be congidered in a study of lo-
cal failure is the critical compressive stress at which
the cross section begins to distort. This critical stress
can usually be given in coefficient form. The purpose of
tis rpaver is to present a chart that will be useful in
establishing the 'coefficient to be used in calculating the
critical compressive stress at which crosg—sectional dig-
tortion beeins in a thin-~-wall rectangular tube symmetrical
about its two principal aXes. '

The calculations required to evaluate the coefficient
plotted in the chart were made by the energy method of
Timoshenko. (See reference 2, p. 324, art., 62.) The ex-
act values of the coefficient given by solution of 'the
differential equation (reference 2, p. 337, art. 65) were
also calculated for a number of cases and the energy solu-
tion was found to be correct to within a fraction of 1
percent. Because the calculations are long and were nade
as a vart of a more extended study of local failure in thin-
metal columns, they have been omitted from this paper.

CEART

The caleculation of the critical compressive stress at
which cross-sectional distortion bezginsg in a symmetrical
rectangular tube 4s, in reality, a problem in the buckling
of thin plates, proper consideration being given to the in-
teraction between adjecent walls of the tube. Timoshenko
has ziven the critical stress for a rectangular plate un-
der ed§e compression in the following form (reference 3,

p. 503): :

k m° B ty,°

- (1)
12 (1-p2) n®

fcrit

whers
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- B. is tensionh-compression mo&ulus of elasticisty
for the material. :

M, Poissonlts ratis for the material.
ty,» ‘thickness of the plate..
h, width of the plate.

¥, a nondlimensional coefficient that depends wupon
the conditions of edge sunnort and the dimen=-
sions of the. plate.’

Equation (1) can be used to calculate the critical
compressive stress at which cross-sectional distortion bde-
gins id a thin-wall tube symmetrical about its two prin-
cipal axes. In this case the values of k are obtained
from figure 3. The symbols h and t, are the width and

thickness, respectively, of the wider pair of walls; D
and t3 refer to the narrower pair of walls. The curves

in figure 3 were established by pletting the calculated
values of k, given in table I, for the energy solution.

LIMITATIONS OF CHART

The chart of figure 3 must be considered as approxi-
mate. For engineering use, however, it may be regarded as
8 close approximation because the exact values given by so-
lution of the differential squation show that the energy
solution is corrscst to within g fraction of 1 percent.

(See table II.) :

The values of k¥ given in the chart are the minimum
_values possible for a tube of infinite length. For engi-
neering use, however, these values will avply to any tubve
having a length greater than the width of the walls that
have the larger ratio of width to thaickness. The length
of 2ll tubes likely to be encountered in airecraft design
will thus fall within the range to which the chart applies.
1t should be mentioned that, for very short %tubes vhere
lenzth does have an appreciable effect, the values of k
glven in figure 3 are conservative.

The values of k given herein apply to tubes in which
the material is both elastic and isotropic. Steel, alumi-
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num alloys, and other metallic materials usually satisfy
these conditions, provided that the material is stressed
within the elastic ransze. When a material is stressed
above the proportional limit in one direéction, it is no
longer elastic and is probadbly no longer isotropic. In a
later section of this report it is shown how equation (1)
and the chart of figure 3 moy be used to calculate the
critical stress when the rectangular tube is loaded beyond
the provortional limist.

DEFLECTION EQUATION

The previously mentioned deflection equation used in
the energy solution had the following form for each wall
of the tube:

'-A_ "' .
vo= Ligg (by - y2) + B gin qg_Jsin EgE (2)
where
w is deflection normal to wall.
L, 1length ¢f wall equal to length of tube.
n, number of half waves that form in the length
of the wall. The ratio L/n is therefore
the half-wave length of a wrinkle in the di-
rection of the length.
b, width of wall concerned.
z and y, coordinates measured from end and side of wall,
regpectively.
U and B, coefficients. The values of U and B

for one vair of oppcsite walls are expressed
in terms of U and B for the other pair
of opposite walls by the use of the condi-
tiong that the rotation at the edze of adja=
cent walls be equal and that the bending
moments at the edge of adjacent wnalls be in
equilivrium, The ratio of U/B for one
wall and L/n are then given values that
cause the critical stress to be a minimum.
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DISCUSSION OF (CHART

When -tb/th is equal %o or greater than 1, the wider

of the ovposite walls of the rectangular tube are the weak-
er. The curves for +%,/%, of 1 and 2 in figure 3 there-

fore show how the strength of the wider walls is affected
by the width of the adjacent walls. It should be noted
that these curves are smooth, having no sharp bdreak such
as the curve %y,/%y for 0.5 has at a b/h value of 0,65,

When tb/th is less than 1, the wider pair of the

opposite walls are the weaker provided that b/h is less
than a definite valme. When ©ob/h is greater than this
value, the narrower pair of the opposite walls are the
weakeér., At the value of b/h where the weaker walls
change from the wide to the narrow side of the rectangle,
there is a break in the curve for k. For tb/th = 0.5,

thie break comes approximately at b/h = 0.65.

CRITICAL STRESS FOR LOADING BEYOKD

THE PROPORTIONAL LIMIT

In the elastic range, the critical compressive stress
for an ordinary column that falls by bending is given by
the Zuler formula. Beyond the proportional limit, which
marks the upner end of the elastic range, the reduced
slope of the stress—straln curve requires that an effec-~
tive modulus E be substituted for Young's modulus E. in
the Euler formula. The value of E is sometimes written
as TE, .

E:TE (3)

The valiue of T <varies with stress. By the use of the
double~nodulus theory of column action, theoreiical val-
ucs of T can be obtainecd from the cowpressive stress-—
strain’curve for the material (rsference %, p. 572, art.
37, and references 4 and 5). Tests show that, in prac-
tice, theoretical values of T, derived on the assump-—
tion that no deflection occurs until the critical load is
reached, are too large. It is therefore best, for prac-
tical use, to obtain the values of T from the accepted
column curve for the material in the manner outlined in
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the illustrative problem. The values of T thus obtained
take into account the effect of imperfections that cause
deflection from the beginning of loading as well as other
factors that may have a bearing on the strength.

For crosgs—~sectional distortion of a thin-wall rectan-
gular tube, the critical compressive stress in the elas-—
tic rangce 1s given by equation (1). Avove the propvortion-—
al limit, the critical compressive stress 1s glven by
equation (1) with an effective modulus MNE substituted
for Young's modulus X, or

2 2
foppy = N oETE iy - (4)
12 (1-p°) b
In the absence of adeguate test data, the wvalue of T can~
not be definitely estadblished. It ls reasonable to ex-
pect, however, that T and T are related in some way.
On the essumption that TN is & function of T, several
possible relatlions were studied.

Waen an ordinary column begins to deflect, failure is
resisted by the longitudinal bending stiffnesg of the el-
emental volumes of material composing the member. The re-
duced critical strength at stresses beyond the proportion-
al limit is, therefore, explained by a reduction in the
longitudinal bending stiffness, which is caused by tho
smaller slope of the stress~strain curve.

Then cross—sectional distortion begins in & thin-wall
rectangular tube, failure is resisted by the following
characteristics of the elemental volumes of material com-
posing the walls of the tube:

1. Longitudinal vending stiffness.

2, Torsional stiffness.

3. Transverse bending stiffnesgs.
The reduced critical strength for local fallure at stress-
es bevond the proportional 1limit is, therefore, similarly
explained by the varying reductions in 1, 2, and 3 caused

by the smaller slope of the stress~straln curve.

In article 71 of referencs 2, Timoshenko discusses
the effect of certain reductions in 1, 2, and 3 on the
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critical stress for a simply supported plate under edze
compression,

In the follewing discussion, the general principles
of thlg procedure are used.

The differential equation of the deflection surface
of a plate under edge compression in the =x direction is
2 M4 4 4
d w a w W 3 w]
£f 4t % = wD|8—F %2 + . (5)
= Lax® 3x ay7  3ytd :

(81

where
£ is stress on the loaded edges of the plate.
t, thickness of the plate.
D E t°

= s flexural rigidity of the platse.
12 (1-p%)

The left side of equation (5) is concerned with the exter—
nal forces on the plate that cause buckling, whereas the
right side is concerned with the internal resistance of
the nlate to buckling. The first and the third terms in
the brackets on the right side of equation (5) are con-
cerned with the longitudinal and the transverse bending,
respectively, whersas the second term is concerned prin-—
cipally with the torsional stiffness.

It is assumed that, when a plate under edge compres—
sion is loaded beyond the proportional limit, the thres
terms in the bracket nn the right side of equation (5) are
reduced by multiplying each by a different function of T,
where T 1s defined by the relation,

T = - ‘ (6)

If these functions of T are Ty v Tz» and T1,, Trespec-
tively, the differential equation becomes

3°y _ _ D atw *w__ 2w
£oF =~ g [Tl SEt 2Ty 3% - + T, o (7)

It is desiradle at this point to discuss the evaluation of

g ard Ts
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When an ordinary column is loaded beyond the promnor-
tional limit, the longitudinal bending stirffness 1s multi-
plied by the factor T, which is less than unity. Because
longitudinal bending in a plate or column is the same tyve
of action, it is reascnadble to write

Ty = T ' (8)

beyond the vroportional limit, the term princivally
assoclated with the torsionagl stiffness is multiplied by
To + According to Bleich (reference 6), the factor T,

should lie between T and unity. Since T 1is always
less than unity, Bleich selected

TB =/T (9)

eg a convenient wvalue. Timoshenko (refercnce 2) also usos
this value.

After analyzing the results of some 500 tests of an-~
gle columns where fallure occurred by twisting, Kollbruaner
(reference 7) concluded that, beyond the proportional lim-
it, the torsional stiffness should be multiplied Dby the
factor (T +,/T§/2. Thug, according to Kollbrunner,

Ty = L?_“_.E.:ZE ' (10)

where the values of T are obtained from the stress-
strain curve by use of the following formula:
Tt
4 o
=

= B —— (11)
(1+/5)

T

where E! 1s the slope of the stress—strain curve at the
stress for which the value of T is desired.

The method used by Xollbrunner to determine T isg
based on the assumption that no deflection takes place un-
t1il duckling occurs. Consequently, all the effects of
deflection from the beginning of loading are included in
his relation between T and 7T. In practical engineer-

ing calculations, it is safer, as well as more expeodient,
to determine T from the accepted cclumn curve for the
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material. By this procedure the values of T 1include ef-
fects caused by deflection from the beginning of loading.
Had XKollbrunner determined the values of T from the ac-
cepted colunn curve for the material, a different rela-
tion between 1T and T would have been found. At a

glven stress, the value of T determined from the acecept-
ed column curve for the material is smaller than the value
given by eguation (11). It is therefore conservative to

uso Kollbrunner's equation for T when the values of T

are detormined from the column curve.

It seems to be common practice in the literature to
assume that the transverse bending stiffness is unaffected
when the longitudinal stress sxceeds the proportional lim—
1% for the material, This assumption is expressed in
equation form as Ffollows:

Although this value for Ta seems reasonabls, it is mere~
ly an asgsumption. The term to which Ta is multiplied is
about twice as ilmportant as the term to which T; is mul-
tiplied. Therefore, the conservative value for T, will
probably compensate for any unforeseen reduction in 7.

Now consider equation (7). Because opposite walls of
the rectangular tube gre alike and symmetrical, only two
squations of the type of equation (7) are required in this
problem. From the solution of these equations, with proper
regord for the sdge conditions at the corners of the tube,
a long transcendental equation for the buckled form of
equilibrium is obtained. Study of this transcendental
equation showed that if

T, = T 1}
Tg = AT (13)
T, = 1

then

n

Jr . (14)

This result is true for all values of b/h  and tb/th.
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Further study showed that if

T, = T W
Ta = —I-—--'--;::———.L > ( 15 )
o,
Ta = 1 J
then
n o= Tt B3 N T (16)
4

when b/h = 1 and +t,/ty, = 1. For any other values of
b/h and t,/%,, equation (16) gave a conservative ap-
proximation for TN eas indicated by the comparison of nu-
mericrl veolues given in table III.

The values of b/h sand ty/t, selected for the com-

parigon made in table III were chosgen to represent some'of
the cases in which equation (16) would be least accurate.

Also the low value of T = 0.1 1used as a basis for com-
parison was selected with the same thought in mind. For
larger velues of T, the mercentage error is reduced.

. For comparison, the values of TN given by equatlons
(14) and (16) are plotted against T in figure 4 in addi-
tion to the very conservative value of

n = T (17)

T, = Ty = Tg =T (lB)

As 2 matter of interest, there 1s also plotted in figure 4
the relation between TN and T when TN = T2 and Tz is
given by equation (10).

As a summary of this discussion, 1t 1s recognized
that the proper value of the effective modulus NE for
local buckling of thin-wall rectangular tubes will depend
upon tests. Careful consideration of theory and experimen-
tal data, however, indicates that it is gafe to_ assume
that N is given by equation (16) provided that T is
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evaluafed by use nf the accepted column curve for the ma-
torial,

ILLUSTRATIVE PROBLEM

It is desired to calculate the critical compressive
stress at which cross-~sectional distortion begins in the
three 24ST aluminum alloy rectangular tubes shown in fig-
ure 5.

The critical stress is given by equation (4):

k nt B oty (4)

2 2
12 (1=p ) h

fcrit

If equation (4) ig divided by M, +the following equation
is obbtained:
forit _ kT B ty®

19)
n 12 (1-p®) n° (

The probdlem is to find f__,, when the value of fcrit/n
has been established by equation (19).

It is assumed that the value of N is given by equa=—

tion (16):
n .__._I._..t._z___“/j (186)

The wvalue of T depends upon the critical stress. Therse-
fore, the value of TN also depends upon the critical
stress. Although theoretically the wvalues of T and hence
of T can be obtained from the stress—strain curve, they
are best obtained from the accepted column curve for the
material.

Evaluation of .T

The equations that show the variation of T with
stress for 24S5T aluminum alley which just meets the require-~
ments of Navy Dept. Svecification 46A9a (tensile yield
strength, 42,000 pounds per square inch) are ziven in part
I of reference 8. In order to show how similar equations
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can be derived for any other material, these equations will
be derived from the column formules given in reference 8
for 2487 aluminum alloy.

The accepted column formulas for 24ST aluminum alloy
are ziven by equatioans (8) and (9) of reference 8. Thesc
equations are, resvectively:

For 41,200 > £, > 19,600 1b./sq. in.

fopgs = 43,700 (1 = 0.,00752 L/p) (20)

-

for f,.gp < 19,600 1b./sq. in.

)

Terit = L_Q;OQ?OO (21)

/’

n;

O

Y

For the same member, the critical stress given Dy the
accepted column curve must be equal to the critical stress
given by the Euler formula with an effective modulus

E = TE substituted for Young'!s modulus E; or
2
_m® T B _ T 105200000
fcrit - /in“ - (L>a (22)
N Ez’ \E

Now, if equations (20) and (21) are solved for L/p, the
following expressions are obtained:

For 41,200 > f,.44 > 19,600 1b./sq. in.

_'{_z_ - 43700 - fopi4 (23 )

P 328.6 '
For f_ .4 < 19,600 1v./sq. in,

I / 105200000 (24)

P ferst

Substitution of these values of L/p in equation (22) and
solving for 7T gives
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For 41,200 > £ 44 > 19,600 1b./sq. in,

cri
forit forit)
r = forit < op4 . —crit o5
3925 \*'22% = 359760 , (25)
For f,.44 < 19,600 1b,/sq. in.
T = 1 . ‘ (26)

Equations (25) and (26) are the same as équations (15) and
(18) of reference (8). :

Evaluation of the Critical Streigs for
Crogss—-Sectional Distortion

By the use of equations (25) and (28), the valus of
T c¢an be established for assumed values of fopige The

values of T obtained can then be substituted in equation
(16) to obtain the corresvending values of TN. If the as-
sumed values of f,.3: are divided by the corresponding

values of T, a eurve of fcrit against fcrit/n can be

plotted. The critical stress at which cross—sectional
distortion begins in the three 24ST aluminum-alloy rectan-
gular tubes shown in figure 5 car then be calculated by
the use of equation (19) and the curve of f,.y¢ against

fcrit/n‘

The solid curve in figure 6 shows the relation between
fopit 2and fur3:/M  for 24ST aluminum alloy calculated in

the manner outlined. The three additional curves in fig-

ure 6 were obtained by the equation for T noted on each

curve. The calculated values used to establish the curves
of figure 6 are given in table IV.

The critical stress for crosg—sectional distortion of
the tubes in figure 5 is cbtained as follows:

Tube &
ty 0.084 - 1.0
ty ~ 0.084¢ °
b _ 0.%82 _ 4
h 1.84 0.5
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1y
If

5.16 (read from fig. 3)

E

i

10.66 x 10% 1bv./sq. in.
o= 0.5

From equation (19)

Torit _ 5.16 %" X 10,66 x10° x (0.084)%

= - = 103,600 1b./sq. in.
i 12 (1-0.37) x (L.84)

From the solid curve of filgure 6

fopit = 36,400 1b./sq. in.
Tube B

5y _ 0.042

tp  0.084 0.5

A
|
>

.11 (read from fig. 3)
E = 10.66 x 10° 1b./sq. in,
LL:O-z

From equation (19)

forit _4.11 %72 Xx10.66 X 10% x (0.084)

5 - = 82,530 1b./sq. in.
n 12 (1 - 0.%°) x (1.84) :

From the solid curve of figure 8

Topit = 34,900 1b./sq. in.

Tube C
Eb — o‘gég _ 0
ty  0.021 )
L _ 0.92 _ =
w - 1.84 © 0°°
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‘k = 6459 (read from fig. 3)
E = 20.66 x 10° 1b./sq. in.
B o= 0.3,

From equation (19)

forit _ 6.59 X > x 10.66.x10%x (0.021)%
M 12 (1 = 0.37) X (1L.84)%

= 8,270 1b./sq. in.

Because f,.i./7M <‘i9,600“lb.[§q1 ;ﬁ:,' it follows from
figure 6 that
' ' forit P
o - forgy = —op = 8,270 1b./sq. in,
Had it been assumed that 1 = ~T, the value of f,n3y
for tube A would have been read from. the curve for T =

T in figure 6 and would have been 37,400 pounds per
square inch instead of 36,400. The critlcal stress is thus
raised only about 3 percent by using the least conservative
value of T considered herein. If the very congervative

value of Ti= T is used, the critical stress for tube A
is read from the curve for 1N = T in figure 6, which glves
forit = 33,200 pounds per sguare inch. The critical stress

is thus lowered about 9 percent by using the most conserv-—
ative value of M.

The ultimate compressive strength of a thin-wall tube
of rectangular secticn will, in general, be higher than
the lead at which cross—sectional distortion begins. At
stresses approaching the yield voint for the material, the
critical load and the ultimate load apvroach the saue Value.
No attempt has been made in this paper to discuse the ulti-
mate strength of a thrin-wall tube of rectangular .section;
the soluftion for the critical load logically precedes . the
solution for the ultimate load.

CONCLUS IONS

1. The critical compressive stress at which cross—
sectional distortion occurs in a2 thin-wall rectangular tube
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symmetrical about its two principal axes is given by the
equation

kw2 B tp°
12 (1 - p®) ®w°

crit = 1

whore

E and p are Young's modulus and Poisson's ratio,
respectively, for the material.

h and %y, the width and the thickness, respec—
tively, of the wider walls.

k¥, a coefficient devendent upon the relative dimen-
siong of the tube, minimum values of
wiich may be obtained from figure 3.

N, & factor taken so that TNE gives the effective
modulus of the walls at stresses beyond
the elagtic range.

2. The value of the effective modulus MNE for local
buckling of thin-wall rectanzular tubes will depend upon
testsa. In the absence of such tests, however, 1t 1s rea-
sonable to assume that 1N is a function of T, where TE
is the effective modulus of an ordinary column at stresses
beyond the elastic rangs. 4 careful study of the theory
and such experimental data as are avallable indicates that
it is safe to asgume that N is given by the equation

provided that T is evaluated by use of the accepted col-
unn curve for the material.

It igs important to mention here that, when N 1is con-
sidered to be a function of T, the equation for T will
depend upon the manner of the evaluation of T, If 7 is
determined from the stress-strain curve cn the assumption
that no deflection takes place until the critical stress
is reached, the effect of deflections from the beginning
of loading must be separately considered. If T iz de-
termined, however, from the accepted column curve for the
material in the manner outlined in the illustrative prob-
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lem, part, if not all, of this effect is automatically
considered.

%, Because 1N is a function of T, which is a
function of the critical sbtress, a curve of f,n34 agalinst

fcrit/n should first be plotted for the material by means

of the method of calculation outlined in the illustrative
problem. Then, in a given probdlem, fbrit/n can be com-—

puted from the formula

-
fGI‘it - o TT'a g 'bh
M 12 (1 - p®) n®

"and the eritical streéSucan be read. from.this curve.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aercanautics,
Langley Field, Va., January 6,  1939.
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TABLE I
Calculated Minimum Values of k

by the Energy Solutinn

i

75\\EQi§i 0.5 1 2

h

0 7,01 7.01 7.01
.050 5.13 6.45 --
.075 4.88 - -~
.100 4.72 6.09 6.85
.125 4.62 - .
.200 4.43 5.68 6.73
.300 4.31 5,45 6. 65
.400 4.22 | - 5.29 6.61
.500 4.11 5.16 6.59
.525 4.08 - -
.550 4.04 - -
.575 4.00 - -~
.590 3.97 —— —_—
.600 5.95 5.05 §.57
.610 3.92 —— -
625 3 .89 - --
.650 3. 81 - --
.675 3.64 - -
.700 5.38 4.87 6.57
.800 2,58 4.66 | 6.57
1900 2.03 4.37 6.57
1.000 1.64 4.00 6.58
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TABLE II
Comparison of Values of k Computed
by the Energy Solution end
the Exact Solution
ty b Iz k Error
ty h (energy) (exact) (vercent)
C.5 0 7.0074 6.9707 0.524
«3 4,3066 4.,3064 .005
.6 3,9469 3,9469 0
7 3.3785 3.3485 . 888
1.0 1l.6441 1,6377 , 391
1.0 | © 7.0074 6.9707 0.524
.3 5,4471 5,4395 140
.7 4.8697 4.8672 .051
1,0 +.0000 4,0000 0
2.0 | 0 7.0074 6.9707 0.524
’ 3 6.6513 6.6245 403
.7 5.50682 6.5453 . 349
1.0 6.5764 6.,5507 .391

20
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TABLE III

Comparison of Values of T Given by the Equation

n=I_+__3>_5£
4

wvith the Exact Values Found by

Solving the Transcendental Equation

b 13 T+3J?_ i) Error
h th T4 exact value (vercent)
0 0.262 0.278 5.76
. & 0.5 .262 273 4,03
.7 .262 275 4.73
0 ' 0.262 0.278 5.76
o7 1.0 262 266 1.50
1.0 .262 .262 0
0 2.0 0.282 : 0.278 5.76
In all calculations for this tadle, T, = T, Tg =
T+ /T

— » Ty =1, and T = 0.l.

=
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TABLE IV
Values Used to Establish Curves in Figure 6

(A1l values in pounds per square inch)

ferit
N T 0
i . T T _+/7 T+3/7T F
crit 2 ] 4

20,000 20,260 20,190 20,160 20,130
22,000 24,160 23,590 23,320 23,050
24,000 29,320 27,860 27,170 26,530
26,000 38,330 33,290 31,960 30,730
28,000 43,170 40,430 38,060 35,9860
30,000 60,840 50,080 46,070 42,660
32,000 83,180 63,680 57,010 51,600
34,000 120,950 83,810 72,670 64,130
36,000 . 192,000 116,020 96,880 83,140
38,000 350,230 173,520 138,580 115,360
40,000 8%1,770 299,180 226,630 182,400
41,200 1,827,000 476,960 348,270 274,300
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